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The interfacial free energy appropriate to a finite system in the Ising universality 
class is calculated to one-loop order. Consideration is given to the behavior 
in both three and four dimensions via an epsilon expansion. The results 
corresponding to three dimensions are compared with the simulation data of 
Mon and Jasnow. 
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1. INTRODUCTION 

The critical properties of finite-size systems have attracted the attention of 
researchers ever since the original investigations of Fisher ~1l in 1970. Of 
substantial importance was the discovery ~2' 3) that the same field-theoretic 
techniques used in the description of critical bulk phenomena can also 
be applied to finite systems. In particular, it is possible to utilize the 
renormalization group and epsilon expansion to calculate finite-size scaling 
functions explicitly. However, at the present time there does not exist a 
field-theoretic analysis of the scaling function for the interfacial free energy 
associated with two phases in coexistence. An analysis of this type, while of 
interest in its own right, would also contribute to the body of literature 
that deals with systems lacking translational invariance. Furthermore, one 
is in the fortunate position of having accessible the results of numerical 
simulations(4, 5) with which to compare an analytical calculation. 

Van der Waals ~6) was perhaps the first to investigate theoretically the 
liquid-vapor interface. Almost a century later, when the universal behavior 
of systems near criticality had become a topic of great interest, Fisk and 
Widom ~7) proposed a density functional approach in an attempt to modify 
the classical behavior characteristic of the van der Waals theory. Several 
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years later when the revolutionary ideas of Wilson were being applied to 
various systems, t w o  groups of researchers t8'9) utilized these ideas to 
describe the interfacial profile of a critical liquid-vapor system. This 
represented the first application of the new renormalization group for- 
malism to a spatially inhomogeneous system. Some ten years later, two 
groups of authors ~1~ ~1~ independently calculated the universal amplitude 
ratio R,r involving the surface tension and correlation length amplitudes. 
However, it soon became apparent that while the theoretical estimates for 
the exponent /~ were in respectable agreement with experiments and 
numerical simulations, this was not the case for the amplitude ratio R~r 
The results of both an epsilon expansion and numerical simulation fell 
significantly short of the median value of Roe for fluids, the former by 50 %, 
and the latter by 30 %, while two results were in agreement to within 20 %. 
This state of affairs might have been reasonably interpreted as indicating 
the existence of a systematic error in the measurement of the surface ten- 
sion. This, however, is now believed to be not the case. The discrepancy 
between the theoretical and experimental values is well outside of plausible 
systematic error. (a2-~4) 

Somewhat recently, the discrepancies between the experiments 
and simulation data appear to have been resolved by Mon, {4) who has 
extracted information on the asymptotic form of the scaling function on 
substantially larger lattices than those used in prior simulations. The results 
of this and former simulations reveal that there is a very slow convergence 
of the scaling function onto its asymptotic form. Though the actual data of 
the simulation improve the estimate of the amplitude ratio, a method of 
extrapolation based on the presence of logarithmic subdominant terms to 
the scaling function improves the estimate further, Mon's use of such 
logarithmic terms to fit the data was based on analogy with the two-dimen- 
sional Ising model where such terms are known to be present. Given that 
the results of simulations and physical experiments are consistent, it 
appears that in this case the epsilon expansion is not as accurate as one 
might have expected. However, regarding this expectation, it should be 
kept in mind that the loop correction nearly doubles the mean field 
estimate of the amplitude ratio. As pointed out in refs. 15 and 16, large 
corrections like this are not uncommon for estimates of amplitude ratios. 
Consequently, such estimates often tend to be less reliable than the 
corresponding ones for exponents. In an attempt to overcome this problem, 
a fixed-dimension calculation of the amplitude ratio has recently been 
performed by Miinster, ~7) and yields a result which agrees with that of 
experiments to within a couple percent. 

Of the relatively few direct comparisons between the results of renor- 
malization group (RG)-based finite-size calculations ~2' 3) and Monte Carlo 
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data, there is reasonable agreement. (3'18) Part of the motivation for this 
article is to investigate to what extent the results of a field-theoretic 
analysis of the interracial tension coincide with those of the numerical 
simulations. The program of making such comparisons is essential. Indeed, 
a Monte Carlo simulation can be viewed as an idealized, finite-sized experi- 
ment, which the field-theoretic method is challenged to describe. These 
types of calculations not only rely on standard methods found in bulk 
calculations, they also depend crucially on the nonperturbative treatment 
of coordinates. It is by no means obvious whether the rather novel methods 
that are used will faithfully reproduce quantitative results that are repre- 
sentative of the simulations. The comparison with simulation data thus 
serves as an ideal testing ground to assess whether the methods are 
yielding results in accord with our expectations. The present calculation, 
while proceeding in a manner similar to the previous analyses for uniform 
systems, is considerably more complex. The lack of translational 
invariance, while generally complicating matters mathematically, can even 
lead to problems in principle. Due to the broken translational invariance 
resulting from the interface, there is an additional degree of freedom that 
must be treated collectively. It also happens that the identification of the 
corresponding degree of freedom that arises in the uniform phase calcula- 
tion is not only less clear, its collective treatment is more involved. 

This article presents a calculation of the temperature and size 
dependence of the interfacial free energy for an ]sing-like system in a finite 
volume to one-loop order near and at the bulk critical point. The approach 
taken is to adapt the methods developed by Br6zin and Zinn-Justin (3/and 
Rudnick e t  al. (2) to a spatially inhomogeneous system. The results of the 
calculation are compared numerically with the three-dimensional simula- 
tion data of Mon and Jasnow. (4" 5) In particular, the interracial free energy 
at the bulk critical point and the form of the subdominant corrections to 
the scaling function are considered. Also addressed is the behavior in four 
dimensions, where logarithmic corrections to the mean field behavior are 
expected. Because the behavior in four dimensions is generally not univer- 
sal, it is only possible to present here results that should agree qualitatively 
with the Monte Carlo data. The results and discussion reported here may 
also provide simulators with a better sense of where they might expect to 
see signatures of logarithmic behavior, and aid them in the interpretation 
of their data. 

Here I present some basic background on the surface tension. The 
surface tension, or interracial free energy per unit area, vanishes as one 
approaches the critical point from below as 

~ ( t ) ~  ~o Itl ~ (1.1) 
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where the exponent # obeys the scaling relation 

# = 2 - ~ - v  (1.2) 

or, if one invokes hyperscaling, 

# = v ( d -  1) (1.3) 

For  a finite system, if a finite-size scaling ansatz is assumed, the interfacial 
free energy S and surface tension a take the form 

Z(t, L ) =  Y(atL 1/~) (1.4) 

1 
a - Ld_ 1 Y(atL1/v) (1.5) 

where, with the inclusion of the metric factor a, the function Y(x), and thus 
S(0), should be universal. (19) The choice of a depends upon the convention 
adopted for Y(x). If the choice a = a~/~ is made, then it follows that 

Y ( x ) ~ x  v(d-l) for x ~  (1.6) 

In this article S and similar quantities are in units of kTc. 
For additional or more complete information on the critical 

phenomena at interfaces, the reader should consult refs. 20 and 21. The 
reviews in refs. 22 and 23 give a good introduction to the general theory 
of finite-size scaling, and have extensive references to the original literature. 
The two pieces of work with which this article is closely related, ~2' 3) in 
addition to a collection of other articles dealing with finite-size scaling, can 
be found reprinted in ref. 24. 

The organization of the article is as follows. Section 2 discusses the 
appropriate partition functions and expression for the surface tension. In 
Section 3 the mean field theory for such a system is considered. Section 4 
concerns the effects of including low-order fluctuation corrections. In Sec- 
tion 5 the interfacial free energy is compared with some existing simulation 
data. Section 6 includes some discussion of the results and concluding 
remarks. Some further details are discussed in the Appendix. 

2. P A R T I T I O N  F U N C T I O N S  

Consider an Ising-like system contained in a hypercubic box of linear 
extent L and volume L d. As usual when considering critical behavior, the 
partition function may be written as 

Z =  f ~ b  e - ~ l  = e - ~  (2.1) 
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where Jg[~b] is a reduced Hamittonian of the Landau-Ginzburg-Wilson 
form 

r 
(2.2) 

In the sum over field configurations for the partition function, a set of 
boundary conditions is understood. For  the present case of a planar inter- 
face, the free energies appropriate to a system of two coexisting phases and 
that of one uniform phase must be considered. 

For  the two-phase system, so as to address the free energy in t r ins ic  to 
the interface, antiperiodic boundary conditions are imposed in one of the 
dimensions and periodic conditions in the remaining d - 1  dimensions. 
These conditions effectively eliminate the boundary of the sample, and 
allow the center of the interface to sit anywhere in the longitudinal direc- 
tion perpendicular to the interface. In the d - 1  transverse directions 
parallel to the interface there is translational invariance. For  the one-phase 
or uniform system, periodic conditions are imposed in all d dimensions. If 
O~p and ~ denote the free energies for the one- and two-phase systems, 
respectively, then the interfacial free energy X and surface tension a are 
defined by 

z = ~ - . 5  = l n ( Z ~ / Z ~ )  (2.3) 

S 
- L a 1 (2.4) 

In order for this definition to be meaningful, the configurations that effec- 
tively enter the partition sum should be those involving one interface. In 
the strong finite-size regime t L  1Iv ~ 1, this criterion is certainly satisfied. On 
the other hand, for tL1/V,> 1, this criterion will be met so long as the aspect 
ratio, which is unity in this article, is not too large. 

The evaluation of the partition functions Za.p in a finite volume 
proceeds in very much the same way as that for a bulk system, except for 
two additional features. One of these is that certain modes will have to be 
treated nonperturbatively. The other is that the lattice sums, which nor- 
mally go over into integrals, must be dealt with appropriately. Putting 
aside the treatment of the lattice sums for the moment, so as to clarify what 
is meant by the special treatment of modes, consider what is done for the 
uniform system. First, a shift in the field 

~b(x) = m + or(x) (2.5) 
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is made, where m is constant, and is the entire k = 0  part of ~b(x). The 
variables are then changed to a k, where 

1 
O'(X)=~--~ E ak eikx (2.6) 

k~O 

with corresponding measure 

.~ dm ~ d~7 k 
x / ~  dm ~a'  (2.7) 
q 

The uniform system partition function may thus be cast in the form 

where 

Z p =  f dm e-nCm)e r,(m) (2.8) 

.4) 
Hp(m) = L a + ~ = oct~[m] (2.9) 

e-rp (m) = f ~cr' e --d~%/~P[~ (2.10) 

(2.11) 

The contribution to Fp(m) is expanded in the standard perturbative 
manner. In the above, and throughout the rest of the paper, the subscripts 
{p,a} refer to quantities for the one-phase and two-phase systems, 
respectively. 

The above approach can be viewed as effectively introducing a moving 
saddle point, in that one sweeps over different values of <~b> about which 
an expansion in fluctuations is performed. In the present circumstance, this 
is essential to maintaining the analyticity of the free energy. Quite often a 
saddle point expansion in a singular procedure that represents quantities 
normally well behaved in their arguments, as a sum, in many cases 
asymptotic, of nonanalytic terms. For example, consider the case at hand, 
which involves 

Zp  f= f dm e -Hp(') (2.12) 

which is a well-behaved function of r for finite L and u > 0. However, at 
leading order in a saddle point or large-L expansion, the second derivative 
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0.5 
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mf with respect to r of In Z p is discontinuous. It is also instructive to note 
that if a usual saddle point expansion is attempted, then the lowest mode 
eigenvalue takes the form 

2o~ [r[ L l/v (2.13) 

and thus becomes unstable for sufficiently small r. Inspection of ~ ,  
however, reveals that this limit should not be singular. 

Consider now the two-phase system. As with the uniform system, if 
one attempts a straightforward loop expansion, the same type of problem 
encountered above occurs. In fact, the situation is worse in that the t w o  

lowest modes (in the ordered phase) are of the form 

2 0 = 0  (2.14) 

21 ~ I r ] L  1/~ (2.15) 

Physically this might be expected since in the two-phase system the onset 
of order has the additional consequence of breaking translational 
invariance. These two modes, which in the bulk limit go over into the two 
bound states, are known in the literature as the translation and breathing 
modes. It is thus necessary to treat both these modes collectively. The treat- 
ment of the translation mode is accomplished by introducing a coordinate 
Zo for the position of the interface center. As will become clear below, the 
treatment of the breathing mode is accomplished by integrating over 
profiles with different amplitude m, one of which is depicted in Fig. 1. This 
degree of freedom is the analog to that introduced in the one-phase system. 

The sum over configurations in the two-phase partition function will 
be arranged into a sum over profiles and fluctuations about these profiles. 
Thus, consider a profile q~(z), where z is in the longitudinal direction. For  

Fig. 1. A profile ~7 corresponding to L/~ = 5 and Zo/~ = 1. In the limits L/~ --, oo and L/~ ~ rr 
the curve becomes that of a translated tanh(x) and sin(x), respectively. 
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the moment assume that the profile center q~= 0 is at z = 0. The profile is 
chosen to satisfy 

~(L/Z)=m= - q~( - L/Z) (2.16) 

~-~ z = L/2 = 0 (2.17) 

and the equation of state at some reduced temperature r(m), that is, 

dEfS r(m)~+ ~(=O (2.18) 
dTz 2+ 

where r(m) is chosen so that ~ has one zero crossing. By now considering 
the extension of this function to ]zl >L/2 ,  it follows that r is a 
solution to the equation of state 2.18 and satisfies the antiperiodic 
boundary condition. The function ~, which depends on m in addition to z, 
will be discussed in greater detail below. 

The collective treatment of the variables m, Zo presented here is 
patterned after that of Gervais and Sakita. (28) Begin by considering the two 
functions 

Yl(Zo, m) = f dax qS(z - Zo, m)[~b - ~] (2.19) 

,d 0~ (. 
y2(zo, m) = J/a x ~ z  ~ (z - z o, m)[~b - q~] (2.20) 

along with the identity 

f dZy 6(y )=  1 (2.21) 

Now assume that the above transformation is well defined enough so that 
one can write 

l = f  d2y6(y)=f dzodmJ(zo, m)6[y(zo, m)] (2.22) 

where the Jacobian J is given by 

J =  det \~uj,/ 

with 

(2.23) 

U 1 = Z 0 ,  U 2 = m  (2.24) 
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These coordinates are then introduced into the partition function by 
inserting the decomposition of unity (2.22) into Z, from which it follows 
that 

Z ,  = f dz o dm J[a, m, Zo] exp( - a f [ 6 ]  - a ~ )  a[y]  

=- f dz o dm exp[ -Ha(m,  Zo) -- Fa(m, Zo)] (2.25) 

where 

H~(m, zo) = ~[q~] = f ddx[(V-j ) 2 . r ~ 2 " u ~ 4 7 -  -t- - ~  -+- "~- ]  (2.26) 

A ~lg~ = f d d x + r+ T + -~, + ~ . ~ 0  "4 

e -c" = f ~ a  J e - ~ a 6 ( y )  (2.28) 

Effectively, f dex aO~--0 in AaCg because of the 6 function and the choice 
of Yl. 

The choice of the functions y~ is to some extent arbitrary, and dictated 
by convenience, The Jacobian will ensure that the partition function will 
remain invariant independent of the specific choice of transformation func- 
tions adopted. By now the use of the function Y2 for the translation mode 
is standard. This constraint effectively clamps the interface so that a stable 
integration over the fluctuations o- may be effected. The contribution 
associated with a collective translation of the interface yields an entropic 
factor of L through the integration over Zo. A detailed account of the 
rationale that leads to the choice of the function Yl can be found in ref. 29. 
Here it will only be mentioned that the above choice is motivated by the 
coincidence of ~ with the breathing mode in the strong finite-size regime 
and the desire to obtain a simple form of interaction A ~ .  

3. M E A N  FIELD THEORY 

Consider the approximation of ignoring the effects of fluctuations 
about the configurations ~. This is achieved by setting ~b = q~a,p and tracing 
over ~a,p in both the partition functions. In the thermodynamic limit this 
level of approximation will retain terms of order 1/u to the free energy. For 
a finite system, however, the integration over m will have the effect of 

822/69/3-4-7 
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mixing different orders in perturbation theory. In particular, such an 
integration leads naturally to retaining terms of order unity in the coupling. 
It also gives rise to an interracial free energy with a logarithmic dependence 
on u at the bulk critical point. This dependence in itself generally would 
require one to consider terms of order unity in u. As the loop correction is 
also order unity, a consistent account of such terms leads to consideration 
of the loop term. Hence, in the present circumstance, a mean field 
approximation based on neglecting the loop correction is problematic. The 
results of this section are thus qualitative, and presented primarily for 
purposes of illustration. 

With the above in mind, setting exp( - Fa, p) = 1 = J, it follows that in 
this approximation, 

Za ['rm2 um4"]] 
Zp=f dmexp(-J f~[q~p])=  d m e x p [ -  ~ , -2-+-~ .v  ] j  (3.1) 

Z a =  f dm exp(-'~v{ [q~a]) = f dmexp[--Ha(m)] (3.2) 

This essentially corresponds to an expression that would be written down 
if one paid no attention to fluctuation corrections other than the need to 
integrate over m, which follows naturally from Landau theory. 

In order to proceed, it is necessary to determine the function Ha(m). 
To this end, first note that the profile satisfying the equation of state (2.18) 
is given by 

~a(Z) = m sn  (3 .3)  

where sn(x) is one of the standard Jacobian elliptic functions (see, e.g., 
ref. 35). The coordinate z0 has been set to zero, as the integration over Zo 
gives only an additional multiplicative factor. The modulus k of the elliptic 
function, the correlation length 4, and the reduced temperature r(m) are 
given by 

( uL 2m2\ 1/2 
kK(k) = \~- f f - - - j  / (3.4) 

L 
_ (3.5) 

2K 

u m  2 / I \  
r(m)- 12 ~k - 5 + 1 )  (3.6) 
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where K(k) is the complete elliptic integral of the first kind (see, e.g., 
ref. 35). For  r>~ -(Tz/L)  z there is no profile, that is, q L = 0  is the solution 
to the equation of state (2.18). This is in accord with the expectation that 
a nominal transition temperature should shift by 6r ~ 1/L 1Iv. The function 
Ha(m ) is obtained by substituting ~a into ~,~[~b]. The result is 

where E(k) is the complete elliptic integral of the second kind. 
In Fig. 2 the surface tension tr in four dimensions is plotted for several 

values of the linear system size L. It is clear that tr is smooth across r = O 
(or actually the shifted temperature) when the behavior of the curve is con- 
sidered on a scale Ar < 1/L 2. This behavior is completely analogous to that 
found in ref. 2. However, the overall smooth nature of the curves in Fig. 2 
is to some extent dependent on the inclusion of terms formally of higher 
order than 1/u. Though not apparent from the figure, it happens that for 
sufficiently high temperatures the surface tension becomes negative. This 
disaster results from both the incorrect normalization of the measure and 
inclusion of terms of higher order in the coupling than those consistently 
accounted for. To obtain the proper behavior in this regime it is necessary 
both to work at least to one-loop order and to reassess the present 
approach. In particular, a consistent approach will ultimately have to 
abandon the hope of obtaining globally smooth curves for the interfacial 
tension. 

In the present circumstance L'(0) is not expected to be universal, or for 
that matter, independent of L. Inspection of the curves, however, indicates 

• ~ 0,08 1 Cr 

\ \  o o I 

-0.1 4).05 ~ 0.0,5 0.1 
1" 

Fig. 2. The surface tension a in mean field approximation for various values of L with 
coupling u = 1. 
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that Z:(0) depends very weakly on L. Due to the manner in which the 
Jacobians and loop terms were dealt with, this is entirely accidental. This 
behavior may be understood by noting that because of the depressed 
transition temperature of the two-phase system, at r = 0 only profiles with 
small moduli should effectively enter. It is then reasonable to approximate 
Ha by the first term of an expansion in the modulus k, 

L a/Tcm~ 2 
Ha-~ ~-  ~---~-) (3.8) 

This approximation becomes better as u becomes smaller. Upon a change 
of variable s = L m  in Za, p, the L dependence cancels and 

Z_2 p ~ ~~176 ds exp E - (u /4! )s  4 ] (3.9) 
Za -- S~_oo ds exp[ -- (rts)2/4] 

which gives 

Z'(0) _~ ~ In I247z2/~ 5/4)41 (3.10) 

This expression agrees within a couple percent with that of the curves for 
values of u < 10, with better agreement for smaller u. The above illustrates 
one manner in which terms of ln(u) may enter the free energy. It also 
happens that the Jacobian gives rise to such terms below the critical point. 

4. F L U C T U A T I O N  C O R R E C T I O N S  

This section addresses the manner in which leading fluctuations are 
included in the free energy. In order to treat these fluctuations in a con- 
vergent manner, it is necessary to implement the renormalization group. 
This amounts to successively integrating out all high-momentum modes until 
the block size e l - min(L, ~), at which point a loop expansion may then be 
performed. (26) This is done for the uniform system following refs. 2 and 26. 
For the nonuniform system, a similar approach is taken, (s) of which a brief 
account follows. A shift in the field is made, 

~b=~+cr (4.1) 

taken to flow according to the disordered and the parameters r(l), u(l) are 
phase reeursion relations 

dr 2r + (4.2) 
dl l + r  

~-~= e u -  (1 + r )  2 (4.3) 
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while the average of the field flows as 

6(x, 1) = e (a- 2 + n ) l / 2 6 ( x e l  ' O) (4.4) 

The recursion relations are stopped when 

t(l,)+ g(l*) 
--5-- (6(l*)2) 

1 
+L'/*'2t ) - 1  (4.5) 

where t(/), g(l), L(l) are given by 

t(l) = r(t) + Kau(l) Kar(l) u(l) lnl-1 + r(l)] (4.6) 
4 4 

g(l) = u(1) - ~  Kau(1)Z {ln[ l + r(1) ] 

L(1) = e- tL  

+ ~ }  (4.7) 

(4.8) 

and the phase space factor Kd= [2 a btd/2F(d/2)]-l. The average <q~2> 
appearing in (4.5) is discussed below. An approximate integration of the 
RG equations (4.2), (4.3) reveals that (26) these parameters evolve according 
to 

hie el 
g(t) = - -  (4.9) 

Q(l) 

t(0)e2' (4.10) 
t(l) = Q(l)l/3 

where 
Q(1) = 1 + (u/u*)(e ~'-  1) (4.11) 

Upon integrating out the field a, it is possible to show that when account 
is taken of the trajectory integral, bare quantities may effectively be 
replaced by renormalized ones, along with appending appropriate bulk 
subtractions. 

From this point on, all parameters refer to renormalized ones (their 
value at l*), and the following notation is adopted: 

(q;, O)= f dax ~(~ (4.12) 

(~, GO) = f dax dax ' $(x) G(x, x') ~b(x') 

lfr = (~', 4~) '/2 

(4.13) 

(4.i4) 



552 Morris 

Consider now the contributions to /'(m 2) arising from the Gaussian 
fluctuations. For the one-phase system these follow immediately from 

~O.OpL )/2_ L d/2 1 (4.15) f ~a'e-  
3 -(2--~/2 (det' Gpl) '/2 

where the prime denotes omission of the lowest (k=0)  eigenvalue. 
Similarly, for the two-phase system it is straightforward to show that 

(qJ,, ~q~a/c~m) [ (OqSJc3z. O~a/Oz)] 1/2 
f~aJe  ('~'~ (~a, ata Ca) ..] 

J 
- (det' Gal) 1/2 (4.16) 

Some comments regarding this latter result now follow. In obtaining this 
result, the a dependence of J has been ignored, so that 

J --- (~z~S ' ~ ) (  q~"' cqq~a']~mj (4.17) 

The prime on the determinant omits the lowest (translation mode) eigen- 
value of the operator G a i which is given by 

Ga'(X,X')= - V 2 + t +  6 a ( x - x  ') (4.18) 

where to order u the replacement r ~ t, u ~ g has been made. Similarly, G' 
is the projected propagator 

r r 
G'a(X, x') = Ga(x, x') (4.19) 

2o 

which may be replaced by G, since q~a has no overlap with ~o. The factor 
J may be written in the form 

J 2g(Ga)l/2 

where 

0 I1~.11 
c~m (4.20) 

(~a, Ga q~a) ( G a ) -  
(~ ,  '~a) 

(4.21) 



Finite-Size Scaling of the Interfacial Tension 553 

In the expression for J ,  the factor (Ga} may be interpreted as arising 
because ~a is not an eigenmode of the fluctuation operator. This factor 
tends to cancel terms from the determinant that have already been 
accounted for by the integration over profiles. 

Before proceeding with the explicit evaluation of these formulas, an 
important mode of approximation is discussed. As both partition functions 
are of the form 

Z = i dm e-mm2)e r(m2) (4.22) 

it appears that the function F(m 2) must be evaluated for general m. Such 
a global evaluation of F is, however, both problematic and unnecessary. 
Allowing m 2 to vary over all positive values will in principle cause 
additional modes to become unstable. This problem is circumvented by 
exploiting the perturbative nature of the calculation to organize an 
expansion about a suitable value of m 2. It can be shown (29) that to order 
u ~ the replacement 

F(m 2) ---) F(<m2)) (4.23) 

may be made, where the average (m 2 } is computed with the weight 
exp[-H(m2)] .  While this is strictly true for the one-phase system, 
additional care must be exercised with the two-phase system, since J takes 
the form 

J = [m] e y(gm2) = mj(m 2) (4.24) 

with y(0) nonsingular. This naturally leads to the weight Ira[ exp(-Ha)  for 
the two-phase system. Thus, the explicit forms adopted for the averages are 

~ dm ]ml3 e ~" ~ drnm~e-np (m2}a= ~ m - ~ l e _ ~ -  2 (4.25) 
( m 2 ) p  - ~ame-.p, 

Finally, analysis of the loop correction reveals that part of this term has the 
effect of replacing the parameters r, u in H by their shifted counterparts 
t, g. 

Returning now to the explicit evaluation of the fluctuation corrections, 
the two Fredholm determinants appearing in (4.15), (4.16) make a 
contribution of 

1 In [ det(-V2 + t + �89 g<~2))a 1 __~ In D 
L d - ~ - V 2 +  t + �89 

(4.26) 
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to the interfacial free energy. The order of the calculation permits the 
replacement of r, u by t, g in this expression. The averages (q~2a) 
correspond to those mentioned above, namely for the uniform system 

(~p2) ~ (m2)p (4.27) 

while for the two-phase system 

( ~ 2 )  = ~2(Z; (m2)a)  (4.28) 

The subscripts a and p on the determinants refer to the boundary condi- 
tions imposed in the direction perpendicular to the interface. The periodic 
conditions in the remaining d -  1 dimensions imply that 

[de t (_~2  + q2 + t +  l g ( ~ ] ) ) a ~  
l n D = ~ l n l d e t ( _ O 2 + q 2 + t + � 8 9  j (4.29) 

where the variable q is a ( d -  1)-dimensional vector with components 

2n 
q~=--~n~, n~=0,  _+1, _+2 .... (4.30) 

Using the short-hand notation 

lnD----~ln~det(Aa+q2)-I q k )d q~ .det(Ap + q2.,  _ = ln[d(q2)] (4.31) 

it follows that 

- -  e-sq2 [Tr e ,Ap_ Tr e-SAa] _= ds F(s) (4.32) 
s 

This integral is broken up into two parts, 

F(s) = ds F(s) + as F(s) (4.33) 

where the constant B is chosen to be of order L 2. The natural choice 
B = 4rcL 2 allows good convergence and is ultimately made. In the first term 
the Poisson summation formula 

~ f (q)  = ~ eiCq mr(q) (4.34) 
q m 
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is used. By noting that the m = 0 term is the bulk contribution, it follows 
after some changes of variables that 

lnD,=(L~ d-~ \2--~J f dd-  lq ln[d(q2)] 

+fl dss(a-3)/z[oa-l(rcs)-l] T ~ s  

+f ds[oa-l(~s)_(1/s)(d 1)/2] \ - -~ - ] - - l n  )~ (4.35) 

( L )  d-' 
-~ \2-~J f dd-  ~q ln[d(q2)] + 2Xfs (4.36) 

The functions T and O are defined by 

T(x) = Tr e -xAp -Tr  e-XAa (4.37) 

O(X)= ~ e -xn2 (4.38) 
cO 

and 2 p'a are the lowest eigenvalues of the operators Ap, a. 

This expression for the finite-size correction is not yet in a usable form. 
The two lowest eigenvalues, while always positive for a finite system, may 
vanish with L more rapidly than 1/L 2. The integral over the trace (4.35) 
may thus become divergent. This divergence, however, will be canceled by 
the eigenvalues that have been subtracted off. By separating these two 
modes out of the trace in the third term above, a convergent expression 
that involves the exponential integral and error function is found. As this 
expression is somewhat formidable, it is recorded elsewhere. (29) For the 
evaluation of the traces and function O it is sufficient to keep only the first 
several terms. 

It was previously noted that the lowest eigenvalue of Aa, the trans- 
lation mode, was positive rather than identically zero. The reason for this 
is that profiles enter the partition sum that do not extremize J4 '~. The degree 
to which this happens is determined by a well L d deep which governs 
fluctuations of the magnetization of each domain bounding the interface. 
As a consequence, this "zero mode" will be null only to the extent that the 
configurations effectively entering tend to be coincident with the minimum 
of this well. It thus follows that 

1 
~a , ~ ,  L --5 (4.39) 
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Because 2 a m a y  become small and the saddle point  q~ is degenerate  in z0, 
this mode,  while not  strictly vanishing, must  still be treated collectively. 

Consider  now the evaluat ion of the F redho lm determinant  d(q2). It  
can be shown that  (29) 

de t [ -~?~  + (u /Z) (da  2) --2"]a sinh2(pK) 

d e t [ _ ~ ? ~ + ( u / Z ) ( q ~ ) _ 2 ]  ~ - s inhZ( �89 (4.40) 

where K is the same as that  of (3.4) and (36) 

sn co cn co dn co 
P = sn 2 a - sn 2 co Z(co) (4.41) 

U 
x = ~  ( q ~ ) - 2  (4.42) 

with 

sn 4 a (2k 2 sn 2 a - 1 - k 2) 
sn2 co = 3k 2 s n  4 a - -  2(1 + k 2) sn 2 a + 1 (4.43) 

sn 2 a = 4 ( 1 + k  2 ) - 2 ~  2 
6k 2 

(4.44) 

Here  ~ is that  of  (3.5), k the modulus  of the elliptic function (3.4), and Z 
the Jacobi  zeta function (see, e.g., ref. 35). The Appendix  briefly discusses 
some propert ies  of the f luctuation opera to r  [A a - 2];  further details can be 
found in ref. 29. 

By combining  the above  results, it is now possible to determine the 
interfacial free energy Z', 

v = .~rmf + ~-lp .4_ ~y-fs (4.45) 

These three terms are respectively the contr ibut ions  from renormal ized 
mean  field theory, the loop term, and the finite-size correction. The  renor-  
realized mean  field ( rmf)  level of app rox ima t ion  replaces bare paramete rs  
in the mean  field approx ima t ion  by shifted and renormal ized ones, 

rmf rmf rmf~ 2" = l n ( Z p  /Za ) (4.46) 

z r m f  f dm e-~p (4.47) 
P 

Zramf=f  Iml dme H. (4.48) 



Finite-Size Scaling of the Interfacial Tension 557 

This is accomplished by including that part of the trajectory integral which 
contributes to the mass and interaction terms. This level of approximation 
gives the order-~ corrections to the classical exponents, and in four dimen- 
sions yields results correct to leading logarithms. The loop contribution, 
which also includes the contribution from the Jacobian(s), is defined by 

( •lp = 2 ~',2-~/ f d e-  ~q ln[d(q2)] - S + In \ L j - ~ /  (4.49) 

where the subtraction is given by 

- -  jddx(<~=>2--(~=~) 2 ) (4.50) 

with 

f ( t )  = K4{(1 + t) ~/2 - t lnE 1 + (1 + t)1/23 } (4.51) 

This term is arrived upon by integrating out kz from the usual hard cutoff 
subtraction. Part of the contributions to f and f '  have been used to replace 
r, u by t, g in the functions H, ,  Hp appearing in (4.47), (4.48). The extra 
factor of L in (4.49) comes from the integration over the coordinate zo. 
Finally, the contribution arising from the finite-size corrections to the 
lattice sum is given by (4.36). 

5. N U M E R I C A L  R E S U L T S  

Before attempting to make comparisons with the simulations, it is 
necessary to consider in more detail the actual calculation of the scaling 
function. As it stands, the calculation requires an "exact" integration over 
a coordinate rn for both the one- and two-phase systems. If this is done, the 
scaling function that results consists of a single smooth curve that inter- 
polates throughout the entire scaling regime. While this is an appealing 
feature, the resulting curve is both in very poor agreement with the simula- 
tions and qualitatively incorrect. (29) This comes as little surprise after it is 
realized that such an integration does not properly truncate terms at an 
order consistent with that of the entire calculation. Furthermore, there are 
also problems associated with setting epsilon to a finite number prior to 
computing the scaling function via a computer. What must be done is to 
extract those aspects of the nonperturbative treatment that are essential 
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to the calculation while simultaneously eliminating the higher-order terms. 
This program is possible if separate pieces of the scaling function are 
considered and the requirement that the pieces join smoothly together is 
relaxed. The primary reason for the occurrence of discontinuities is that the 
terms to be eliminated differ depending on whether the system is near, 
somewhat below, or somewhat above the critical point. While the discon- 
tinuities between the pieces are of order of the eliminated higher-order 
terms, they are nevertheless f inite when the coupling takes on a nonin- 
finitesimal value. In four dimensions the situation improves, provided the 
original coupling is small and the system size is large enough to permit 
partial crossover to the Gaussian fixed point. 

5.1. Below Four Dimensions 

In order to compare the interfacial tension of this article with that of 
a simulation, appropriate measures must be taken to account for the 
differing nonuniversal amplitudes. This is accomplished by invoking the 
assumption that all the nonuniversality is contained in the metric factor. 
It is thus possible to compare the functions Y of Eq. (1.5), or equivalently 
the free energies, once the argument of one is suitably scaled. The corre- 
spondence between the two is 

where 

S ~  = S~2)(bt) (5.1) 

fa(ol~) 1/, 
b = \~(o2---~/ (5.2) 

and a(o n are the amplitudes of the surface tension (1.1) for the respective 
systems. 

Perhaps the most general aspect of the results is their scaling. An 
analysis of the free energy reveals that Z scales with argument tL 1Iv. 
Though this might be expected, the literature is not particularly clear on 
this point. Presumably, because the system contains a "soft" mode, it is 
possible for nonscaling terms of the form In L to enter the free energy. r 22) 
In the present analysis, however, it is found that the length always enters 
in the form of the scaling variable mentioned above. This is a consequence 
of the RG, which gives rise to the renormalized length L* (4.8) entering the 
expansion. The results of the simulations also support the scaling of the 
data. While it might be argued that the breakdown of scaling due to a In L 
term is a small effect, the analysis of Mon (4) focuses primarily on these 
terms, and appears to indicate that the scaling variable enters the 
logarithm. 
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Turning now to the explicit results, the first "piece" of the scaling 
function considered is that appropriate to large negative 2(. It can be shown 
that, (29) to order eo, 

where 

Z(t, L ) =  (a~/" I X I ) " - 2  ln(o-~/" IXl)+ C +  O(e - x ' / ~ )  (5.3) 

X = _ t L  1Iv (5.4) 

4 x / ~  1 + - - - ~  1 - 1 n 2 -  (5.5) O" 0 ~--- g ,  

1( ) 
C = ~  ~, - ln  2 + g - 0 . 1 6 7  (5.6) 

In deriving this result and those that follow, a contribution of In g is 
regarded to be of slightly lower order than gO, but of higher order than 1/g. 

The limit of large X is understood as L ~> ~ while maintaining ~ ~> 1. The 
value of % follows from a bulk calculation using the conventions of this 
article, and is identical to that found in ref. 10, where dimensional 
regularization was used. The logarithmic factor in (5.3) includes, among 
other factors of L, those found in a drumhead analysis, and follows 
immediately from consideration of J and the finite-size term Z "f'. The 
coefficient proceeding the logarithm is equivalent that already found in 
refs. 3 and 32. The leading exponential corrections appearing in (5.3) arise 
from the modulus k differing from unity. 

The data of the simulation (4) were fitted to a form 

Y ( X )  ~- IX[ ~' - A/~ In IXI (5.7) 

with 

A =0.66+_0.12 (5.8) 

Inspection of Fig. 3 indicates that while 0,5 is just outside the quoted 
experimental error, if data for large  X are considered, a factor of 0.5 is not 
ruled out. It is possible that the exponential corrections in (5.3) may 
account for the bending of the data away from the line in Fig. 3. As the 
slope of the theoretical line is less than that found by Mon, it leads to an 
extrapolated value of ao roughly 3% less than Mon's estimate. This 
accounts for some of the discrepancy between the value found by Mon and 
that of Meyer-Ortmanns and Trappenberg. (27) The latter authors extract 
the surface tension from a vacuum tunneling energy and obtain ao = 1.51, 
which is 5 % less than the estimate of Mon. 
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Fig. 3. Comparison between the simulation data of ref. 4 and the large-IXI behavior given 
by (5.3). The intercept a0 = 1.54 has been adjusted to match the large-IX] data with the line 
of fixed slope 0.5. 

Estimates of factors related to A have already appeared in the 
literature. The value of A corresponding to a constrained drumhead 
model (2s) which excludes the zero mode is - 1 / ( d -  1). This value is entirely 
due to the capillary mode fluctuations, and differs from that of this article 
primarily because it does not include effects arising from a collective 
translation of the drumhead. Another result ( d - 3 ) / ( 2 d - 2 ) ,  found from a 
relation involving the surface tension and correlation length in a slab 
geometry, is reported in refs. 3 and 32. In two dimensions it agrees with the 
logarithmic factors found in exact calculations via a transfer matrix spectral 
gap. It is consistent with the result of this article after account is taken of 
an entropic factor of L which has been factored away. (291 

The next piece of the scaling function considered is that appropriate to 
behavior very close to the bulk critical point, X,~ 1. In this regime _r is 
expected to be a linear function of X with 

~ ' ( 0 )  ---- o'l/u Y'(O) (5.9) 

where Y'(0) is universal. Assuming X ~  e and expanding about the quartic 
term in H p ,  while keeping only the quadratic part of Ha, the result, which 
formally keeps terms to ~/-~, is (29) 

X~ln[293F4(5/4)] v / ~ F ( 7 / 4 ) I "  
[_ -)-; J 6F(5/4) 

7r2 2 x ~ F ( 7 / 4 )  {~ 2.63) + -0.74 (5.10) 

where F is the standard gamma function. Upon performing the above 
calculation, it happens that to the order considered, Z(0) is independent of 
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L*. This is expected, as it implies the amplitude is independent of l*. 
Furthermore, it is possible to show that both the entire expression of (5.10) 
along with those pertaining to the other two regimes (5.3), (5.15) are 
independent of l*. The expression (5.10) indicates the manner in which the 
dangerous irrelevant variable g enters the amplitude. 

It is now possible to estimate both the value and slope of L" at the 
critical point; from (5.10) it follows that 

Y(0) ~- 0.64 (5.11 ) 

Y'(0) ~ -0.51 (5.12) 

where use was made that Kag*=2e/3 and ao=4~f2/g*, which are 
appropriate to the order considered in this regime. Notice that unlike the 
first three terms in (5.3), the metric factor in (5.10) does not "naturally" 
appear in the argument of Y. The simulation results of ref. 5 give for the 
amplitude 

Y(0) = 0.6 +_ 0.02 (5.13) 

Regarding the comments made at the beginning of this section, the result 
which follows from the exact integration over m differs from the simulation 
value by a factor of five. 

Concerning the value of the slope, the data of ref. 5 are somewhat 
peculiar in this respect. When the interfacial free energy is plotted against 
X ~, it is found that the data are rather well fitted by a line. This was 
naturally interpreted by the authors as having reached the large-X 
asymptotic regime, even though the data were for somewhat small X. What 
seems odd is that when the line is extrapolated to X = 0 ,  the intercept 
appears to coincide exactly with Z'(0). This in principle cannot happen 
since s is linear in X for small argument. A plot versus X" is thus expected 
to have a small cusp accompanied perhaps by some bending, as was found 
in ref. 30. One alternative is that the data are more representative of the 
small-X behavior, and that a bend or cusp is not visible because # is close 
to unity and the data have some scatter. The absence of a significant bend 
in the data may be related to the value of ~V'(0). Further discussion of the 
rationale for assuming the data to be representative of the small-X regime 
can be found in ref. 29. 

Figure 4 illustrates a comparison of the small-X linear behavior 
predicted by (5.10) with the simulation data of ref. 5. Aside from the verti- 
cal offset, the agreement is quite favorable, and from Fig. 5 it appears that 
the bending generally lies within the scatter of the data. The intercept of the 
offset curve L'(0)= 0.56 is less than, and slightly outside, the value quoted 
in ref. 5. In these figures, the expression (5.10) was scaled with a factor b 
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Fig. 4. Comparison of the small-X linear approximation to Z' with the simulation data 
of ref. 5. 

of Eq. (5.2) that follows from a ao = 1.78 for the simulation. An additional 
factor of 21/vd also arises because the system of the simulation has 2L a sites. 
The amplitude ao appropriate to the bcc lattice was estimated from the sc 
lattice result by the relation 

V ~(_+)sc 7 ') ;~ (5.14) (7" 0 =0" 

where ~0 -+) are the correlation length amplitudes for the respective 
lattices. (31) The value of a~c = 1.54 used corresponds to that found from the 
curve in Fig. 4. 

The form of the scaling function when X>> 1 is now considered. It is 
generally expected that Y should decay exponentially in this regime. This 
is equivalent to the statement that the ratio of the partition functions must 

1.3 

1.2 

1.1 

1 

0.9 
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' ' ' 0 1 1  . . . .  012 . . . .  0 5 '  ' ' 014 ' '  O~ 
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Fig. 5. Comparison of the vertically offset curve of Fig. 5 with the data of ref. 5. The 
intercept of the offset curve corresponds to -~(0) = 0.56. 
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tend to unity to within exponentially small corrections. This is indeed the 
case provided spurious higher-order terms arising from the m integration 
are eliminated. This is an instance in which the results following from the 
unchecked exact integration over m can even be q u a l i t a t i v e l y  incorrect. It 
follows that (29) 

2XU/2e - x ,  

,S '~ (2rC)3/2 (5.15) 

which is essentially obtained from the ratio of the determinants with 
differing boundary conditions. At the present time, there does not appear 
to be any simulation data with which to compare this result. 

5.2.  F o u r  D i m e n s i o n s  

Consider now the behavior at four dimensions. Here logarithmic 
corrections to mean field behavior are expected. For example, the infinite- 
system surface tension should behave as 

~ o  Itl 3/2 I ln(- t ) l  1/2 (5.16) 

For the finite system, below the critical point with IX] >> 1, the behavior of 
2; is analogous to (5.3) and found to be 

2; ~ o. ~ IX 13/2 _ 43_ ln(o.g/3 IXI) + C (5.17) 

where C is given by (5.6) and 

~= - 2 t  (5.18) 

L2r 
X = T ]In rL 1/3 (5.19) 

0"o = (24K------~4) 1/2 (5.20) 

In (5.17) terms involving a double logarithm of t are not intended to be 
taken seriously. A possible approach to demonstrating the presence of 
logarithmic corrections would be to observe how well the data "scale" with 
argument X. However, due to the logarithmic subdominant contribution, 
such an approach may at first appear problematic. There may be effects 
similar to those which made a precise determination of Oo in three dimen- 
sions difficult. Analysis of the form (5.17), however, reveals that the 

822/69/3-4-8 
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presence of some logarithmic factor in X has in general a significantly 
greater effect than the logarithmic subdominant contribution. It should 
thus be possible to observe some form of logarithmic corrections, though 
the precise power of the logarithm may be obscured. 

Recently, Miinster (32) has studied the finite-size behavior of the energy 
splitting between symmetric and antisymmetric states of a double well. This 
so-called "vacuum tunneling energy" is related to the surface tension in 
essentially the same way as the inverse of the correlation length in a slab 
geometry. The results of ref. 32 have been found to be in good agreement 
with some recent four-dimensional numerical simulation data. (33, 34) In par- 
ticular, a logarithmic factor related to and in accord with that appearing 
in (5.17) is found to be consistent with the data. The results of this article 
differ slightly from those of ref. 32 due to the quantities and geometry con- 
sidered. In particular, there is a discrepancy of a factor ln(L/2) in addition 
to different leading exponential corrections to Z. With slight modifications, 
however, (29) the present results may he used to calculate the energy 
splitting, and yield results in agreement with ref. 32. 

The signature of logarithmic behavior can also be found in the vicinity 
of the bulk critical point. Provided that L is large enough for logarithmic 
behavior to be present, that is, 

L ~> e 2/(3K4u) (5.21) 

Z(0), though dependent on L, is independent of the original coupling u. It 
is found that 

Z(O) -~ ~ ln(ln L) + 0.21 
0.43 

(ln L) m 
(5.22) 

which thus should be universal. Unfortunately, verification of this form may 
be difficult due to the presence of the logarithms. 

The behavior very close to the critical point is predicted to be 

while well above it 

where now 

0.85tL2(ln L) 1/6 
Z ~- Z(O) ul/3 (5.23) 

2 
~ ' _  - -  X 3 / 4 e  - x l / 2  (5.24) 

(2~C) 3/2 

L,/; 
X -  (5.25) 

~uK4 ln2(1/t) 
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Notice that close to the critical point, unlike the behavior below four 
dimensions, a different form of variable enters the free energy. As with the 
large-X regime, one approach would be to observe the scaling of the data. 
Though in this regime subdominant parts to the free energy are absent, the 
fact that Z'(0) is L dependent may obscure the determination of the 
"scaling" variable. This problem might be overcome if the L-dependent 
behavior at the critical point is subtracted off. While the above linear form 
is representative of the data only for X~  1, the same form of scaling 
variable should be applicable when X deviates from linearity, so long as 
X ~ I .  

6. C O N C L U D I N G  R E M A R K S  

In this article the techniques developed in refs. 2 and 3 are utilized to 
determine the finite-size behavior of the surface tension. The most direct 
approach naturally gives rise to a single smooth curve for the scaling func- 
tion. This curve, however, is not presented, as it follows from a method 
which is inconsistent in principle. Instead, results are reported that 
correspond to an approach which extracts contributions that are consistent 
with the order of the entire calculation. Though the analysis is complicated 
by the presence of elliptic functions, the analytic results quoted do not 
require recourse to such functions. It is only necessary to understand the 
limiting behavior of the profile, lowest modes, and the coupling dependence 
of various quantities. 

In three dimensions, the results for the behavior near the critical point 
are generally in good agreement with the simulation data. This com- 
parison, however, is based on the assumption that the data of ref. 5 are 
actually representative of the small- rather than large-X behavior of the 
scaling function. For large IXI below the critical point, the leading sub- 
dominant contribution to the interracial tension is found to be logarithmic. 
Though the value of the logarithmic prefactor is slightly outside the actual 
range of that quoted in the simulations, it is believed to be consistent with 
those results. Above the critical point, the scaling function is found to 
decay exponentially provided that the higher-order terms are eliminated. 

The expected form of the results in four dimensions has been reported. 
The approach advocated for identifying the logarithmic behavior is to 
observe how well the data may be collapsed onto a curve by an 
appropriate choice of scaling variable. However, when applied to the 
regime below the critical point where IXIl,> 1, it is possible that finite-size 
effects may obscure the precise power of the logarithm. The form of these 
subdominant finite-size corrections is similar to that found in three dimen- 
sions. While the prefactor to the logarithm is consistent with numerical 
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data of a system with slab geometry, it would also be of interest to observe 
how data in a four-dimensional cubic system behave. Consideration of the 
free energy in the vicinity of the critical point should also reveal the 
presence of logarithmic corrections. At the critical point, it is also found 
that the free energy depends on the system size, but is independent of 
the nonuniversal coupling. Direct comparison of this quantity with the 
simulation data is thus possible. 

A P P E N D I X  

First we discuss some aspects of the fluctuation operator 

d 2 u 
az 2 ~ - ~ ( ~ 2 ) + t - 2  (A.1) 

for the nonuniform system; further details can be found in ref. 29. The 
modulus k and associated correlation length ~ that appear in (A.1) are 
those corresponding to the average ( m 2 ) , .  Rescaling z by ~ leads to 
consideration of the operator 

d 2 
-dy--- 5 + 6k 2 snZ(y) = s (A.2) 

on the interval [ - -K,  K]. Regarding this entity, Hermite/36) has studied the 
so called Lam6 equation of order 2 

f20 = g 0  (A.3) 

in some detail. With antiperiodic boundary conditions on the interval 
[ -  K~ K] the two lowest eigenstates and corresponding eigenvalues a r e  

~0 = cn y dn y, o ~ = 1 + k 2 ( A . 4 )  

61 = s n y  dn y, g = 1 + 4k 2 (A.5) 

and are shown in Fig. 6. The functions ~o and ~1, respectively, correspond 
to the translation and breathing modes. They go over to the two bound 
states in the thermodynamic (k---, 1) limit and become degenerate in the 
strong finite-size (k--*0) limit. Notice that the breathing mode and the 
profile always have nonzero overlap, and the functional forms become 
identical for zero modulus. It is possible to write down the general solution 
to Eq. (A.3). Though there are several forms, an especially useful one 
involves 

0 ---a r  V(y + l e  p~ - - - - -  / (A.6) 
-- dy k O(y) J 
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-2 -1 

- .25 

1 2 

Fig. 6. The translation and breathing modes, denoted respectively by ~0 and ~'1, that 
correspond to L/~ = 5. 

where B is to be substituted for 2 in (4.44), and p and c~ are given by the 
same expressions as in (4.42), (4.44). The functions H and O are Jacobi 
theta functions and are related to the standard theta functions by (e.g., 
ref. 35) 

H ( x )  = 01 }-~ (A.7) 

O(x) -- o4 ~-~ (A.8) 

The function O should not be confused with that appearing in Section 4. 
Because the potential in (A.3) is reflection invariant, if 0(Y) is a solution, 
so is 0 ( -  Y). Provided these two functions are linearly independent, which 
is the case unless p vanishes, the general solution is 

fE = cl tPe(Y) + c21~g(- Y) (A.9) 

The Fredholm determinant was calculated (29) by a method which utilizes 
the fact that if an analytic function A(2) is found that has zeros at the 
eigenvalues of the operator, then A is proportional to the determinant. In 
practice, actually the better defined ratio of determinants was considered. 
The calculation of this quantity was essential to ascertain the behavior that 
resulted from the exact integration over m. However, once this approach 
was modified, it was found to be no longer necessary to consider the 
expression for the determinant, which is valid for general modulus k. 

The term (q~a, Gaq~a) found in (4.16) is now discussed. If an exact 
integration over m were necessary, then in principle a closed-form result for 
this quantity also would be required. It is in fact possible to find an 
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expression for Ga by solving the appropriate boundary value problem. 
However, the quantity (q~, G~q~,) unlike the determinant, does not take on 
a form amenable to simple and accurate numerical methods. Thus, when 
the behavior resulting from the exact integration was considered, an 
approximation for this quantity was employed: 

(&'  1)2 (&' (&'  1)2 
_ ( A . I O )  

where 

~1 = ~1 (A.11) Jl ,rl 

t b = ~  (4k 2+ 1)+ t (A.12) 

and 22 is the next eigenvalue following )~b. Analysis shows that this 
approximation becomes exact when the modulus k is either very small or 
close to unity. It also shows that the problems associated with the exact 
integration will persist even in the absence of the approximation. 

When the exact integration over m is abandoned, a closed-form result 
for this quantity is unnecessary. All that is required are the limiting forms 
when the modulus approaches zero or unity. Regarding the first limit, 
recall that the breathing mode and profile become identical up to an 
amplitude as the modulus approaches zero. In this limit the spectral 
decomposition of (q~a, Gaq~a) reduces to the single term 

(~a, ~1) 2 
(~a, Ga q ~ a ) - - ~ -  (A.13) 

2b 

The result corresponding to the other limit k ~ 1 is 

(A.14) 

which follows from the forms of the profile and correlation function 
appropriate to an infinite system. Analysis reveals that, to order u, all 
algebraically decaying terms contributing to _r cancel. 

It was noted in Section 4 that f involved an "external" factor of [mr, 
Eq. (4.16). While this might appear odd in that configurations with small 
m have vanishingly small weight, it is of the expected form. For example, 
consider the behavior close to the critical point where the integration over 



Finite-Size Scaling of the Interfacial Tension 569 

profiles reduces to the integration over the breathing mode. In this limit, 
the two lowest modes take the form 

The contribution to the fluctuation cr is thus 

( 2 " ~ m I A o c o s ( L ) + A  sin ( 7 ) 1  (A.17) 
a ~ t , , L a i  # 1 

Changing to amplitude and phase coordinates defined by 

2 
m 2 = - ~ ( A ~  + A~) (A.18) 

z 0  = - t a n  - 1 ( A .  1 9 )  

it follows that 

dAodA1 drndzolmlL d 1 
2 ~  -- 4 (A.20) 

This is consistent with the expression given by the small modulus limit of 
~r once the factor (G~)  m has been used to cancel the breathing mode 
eigenvalue from the determinant. 

Finally, consider the origin of the logarithmic factor found in (5.3). 
The factors of L mentioned in the following are those multiplying the 
partition functions. Inspection of the form of the Jacobian factor for the 
antiperiodic system (4.16) reveals that 

j ~ L,a/2L, (a- 1)/2 (A.21) 

while that for the periodic system (2.7) is L *a/2. The m integration con- 
tributes a factor L* a/2 for both the one- and two-phase systems. For the 
antiperiodic system there are two additional factors, which cancel, one of 
L* from the integration over the profile center, and another of l/L* arising 
from the lattice sum for the capillary modes. Putting these results together, 
it follows that the overall multiplicative factor to the partition function 
ratio is 

Z___~ ~ L ,(a_ 1)12 (A.22) 
Zp 
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Hence ,  the  l o g a r i t h m i c  f ac to r  a p p e a r i n g  in _r is 

_ ld-__ In L *  ~ - ~-~ In IXI (A.23) 
2 z 

since in this l imi t  

L *  = e - t * L  ~ Itl ~ L = IXI = (A.24) 

A C K N O W L E D G M E N T S  

I a m  i n d e b t e d  to Prof.  J o s e p h  R u d n i c k  for  his sugges t ion  o f  the 

c a l c u l a t i o n  a n d  g u i d a n c e  t h r o u g h o u t  this work .  I w o u l d  a lso  l ike to t h a n k  

Prof .  K.  K.  M o n  for  p r o v i d i n g  the  s i m u l a t i o n  d a t a  p r e sen t ed  in this paper .  

R E F E R E N C E S  

1. M. E. Fisher, in Critical Phenomena, M. S. Green, ed. (Academic, New York, 1971), p. 1. 
2. J. Rudnick, H. Guo, and D. Jasnow, 3. Stat. Phys. 41:353 (1985). 
3. E. Br6zin and J. Zinn-Justin, Nucl. Phys. B 257[FS14]:867 (1985). 
4. K. K. Mon, Phys. Rev. Lett. 60:2749 (1988). 
5. K. K. Mon and D. Jasnow, J. Stat. Phys. 41:273 (1985). 
6. J. D. van der Waals, Z. Chem. 13:657 (1894). 
7. S. Fisk and B. Widom, J. Chem. Phys. 50:3219 (1969). 
8. J. Rudnick and D. Jasnow, Phys. Rev. B 17:1351 (1978). 
9. T. Ohta and K. Kawasaki, Prog. Theor. Phys. 58:467 (1977). 

10. E. Br6zin and S. Feng, Phys. Rev. B 29:472 (1984). 
11. B. B. Pant, Ph.D. Thesis, University of Pittsburgh (1983). 
12. H. Chaar, M. Moldover, and J. Schmidt, 3. Chem. Phys. 85(1):418 (1986). 
13. M. R. Moldover, Phys. Rev. A 31:1022 (1985). 
14. H. L. Gielen, O. B. Verbeke, and J. Thoen, J. Chem. Phys. 81:6154 (1984). 
15. A. Aharony and P. C. Hohenberg, Phys. Rev. B 13:3081 (1976). 
16. V. Privman, P. C. Hohenberg, and A. Aharony, in Phase Transitions and Critical 

Phenomena, Vol. 14, C. Domb and J. L. Lebowitz, eds. (Academic, New York, 1991), p. 1. 
17. G, Mfinster, Nucl. Phys. B 340:559 (1990). 
18. P. Lai and K. K. Mon, Phys. Rev. B 41:9257 (1990). 
19. V. Privman and M. E. Fisher, Phys. Rev. B 30:322 (1984). 
20. D. Jasnow, in Phase Transitions and Critical Phenomena, Vol. 10, C. Domb and 

J. L. Lebowitz, eds. (Academic, New York, 1986), p. 270. 
21. D. Jasnow, Rep. Prog. Phys. 47:1059 (1984). 
22. V. Privman, Finite Size Sealing and Numerical Simulation of Statistical Systems (World 

Scientific, Singapore, 1990). 
23. M. N. Barber, in Phase Transitions and Critical Phenomena, Vol. 8, C. Domb and 

J. L. Lebowitz, eds. (Academic, New York, 1983), p. 145. 
24. J. L. Cardy, ed., Finite-size Scaling (North-Holland, Amsterdam, 1988). 
25. J. L. Gervais and B. Sakita, Phys. Rev. D 11:2943 (1975). 
26. J. Rudnick and D. Nelson, Phys. Rev. B 13:2208 (1976). 



Finite-Size Scaling of the Interfacial Tension 571 

27. H. Meyer-Ortmanns and T. Trappenberg, ,/. Stat. Phys. 58:185 (1990). 
28. M. P. Gelfand and M. E. Fisher, Int. J. Thermophys. 9:713 (1988)~ 
29. J. J. Morris, Ph.D. Thesis, University of California, Los Angeles, California (1992). 
30. K. K. Mon and D. Jasnow, Phys. Rev. A 31:4008 (1985). 
31. H. B. Tarko and M, E. Fisher, Phys. Rev. B 11:1217 (1975). 
32. G. Miinster, Nucl. Phys. B 324:630 (1989). 
33. K. Jansen, I. Montvay, G. M/inster, T. Trappenberg, and U. Wolff, Nucl. Phys. B 322:698 

(1989). 
34. K. Jansen, J. Jers~tk, I. Montvay, G. Miinster, T. Trappenburg, and U. Wolff, Phys. Lett. 

B 213:203 (1988). 
35. E. T. Whittaker and G. N. Watson, A Course of Modern Analysis (Cambridge University 

Press, Cambridge, 1952). 
36. C. Hermite, Oeuvres Mathematiques (Paris, 1905-1917). 


